MAMIBIA UMIVERSITY
OF SCIENCE AND TECHMOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS

QUALIFICATION:	BACHELOR OF STATISTICS	
QUALIFICATION CODE:	07BAMS	LEVEL: 7
COURSE CODE:	TSA701S	COURSE NAME:
SESSIME SERIES ANALYSIS		
DURATION:	JULY 2022	PAPER:

SUPPLEMENTARY/ 2ND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr. Jacob Ong'ala
MODERATOR	Prof. Lilian Pazvakawambwa

INSTRUCTION

1. Answer all the questions
2. Show clearly all the steps in the calculations
3. All written work must be done in blue and black ink

PERMISSIBLE MATERIALS

Non-programmable calculator without cover
THIS QUESTION PAPER CONSISTS OF 3 PAGERS (including the front page)

QUESTION ONE - 20 MARKS

Use the following data shown in the table below to answer the questions that follow.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Xt	13	17	15	14	19	22	20	26	32	35	38	39	32	37	38

Given $X_{t}=m_{t}+R_{t}$ such that R_{t}-is the random component following a white noise with a mean of zero and variance of σ^{2} and $m_{t^{-}}$is the trend,
(a) Estimate the trend using a centred moving average of order 3
(b) Estimate the trend using exponential smoothing method with a smoothing parameter $\alpha=0.59$.
(c) Evaluate the two estimate above using MSE

QUESTION TWO - 22 MARKS

Consider AR.(3) : $Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\phi_{3} Y_{t-2}+\varepsilon_{t}$ where ε_{t} is identically independently distributed (iid) as white noise.The Estimates the parameters can be found using Yule Walker equations as

$$
\begin{aligned}
& \left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
\rho_{1} \\
\rho_{2} \\
\rho_{3}
\end{array}\right) \text { and } \\
& \sigma_{\varepsilon}^{2}=\gamma_{0}\left[\left(1-\phi_{1}^{2}-\phi_{2}^{2}-\phi_{3}^{2}\right)-2 \phi_{2}\left(\phi_{1}+\phi_{3}\right) \rho_{1}-2 \phi_{1} \phi_{3} \rho_{2}\right]
\end{aligned}
$$

where
$\hat{\rho_{h}}=r_{h}=\frac{\sum_{t=1}^{n}\left(X_{t}-\mu\right)\left(X_{t-h}-\mu\right)}{\sum_{t=1}^{n}\left(X_{t}-\mu\right)^{2}}$
$\hat{\gamma}_{o}=\operatorname{Var}=\frac{1}{n} \sum_{t=1}^{n}\left(X_{t}-\mu\right)^{2}$
$\mu=\sum_{t=1}^{n} X_{t}$
Use the data below to evaluate the values of the estimates $\left(\phi_{1}, \phi_{2}, \phi_{3}\right.$ and $\left.\sigma_{\varepsilon}^{2}\right)$
[22 mks]

t	1	2	3	4	5	6	7	8	9	10
$X_{\boldsymbol{t}}$	24	26	26	34	35	38	39	33	37	38

QUESTION THREE - 18 MARKS

Consider the ARMA(1,2) process X_{t} satisfying the equations $X_{t}-0.6 X_{t-1}=z_{t}-0.4 z_{t-1}-$ $0.2 z_{t-2}$ Where $z_{t} \sim W N\left(0, \sigma^{2}\right)$ and the $z_{t}: t=1,2,3 \ldots, T$ are uncorrelated.
(a) Determine if X_{t} is stationary
(b) Determine if X_{t} is casual
(c) Determine if X_{t} is invertible

QUESTION FOUR - 20 MARKS

(a) State the order of the following ARIMA($\mathrm{p}, \mathrm{d}, \mathrm{q}$) processes
(i) $Y_{t}=0.8 Y_{t-1}+e_{t}+0.7 e_{t-1}+0.6 e_{t-2}$
(ii) $Y_{t}=Y_{t-1}+e_{t}-\theta e_{t-1}$
(iii) $Y_{t}=(1+\phi) Y_{t-1}-\phi Y_{t-2}+e_{t}$
(iv) $Y_{t}=5+e_{t}-\frac{1}{2} e_{t-1}-\frac{1}{4} e_{t-2}$
(b) Verify that (max $\rho_{1}=0.5$ nd min $\rho_{1}=0.5$ for $-\infty<\theta<\infty$) for an MA(1) process: $X_{t}=\varepsilon_{t}-\theta \varepsilon_{t-1}$ such that ε_{t} are independent noise processes.

QUESTION FIVE - 20 MARKS

A first order moving average $M A(2)$ is defined by $X_{t}=z_{t}+\theta_{1} z_{t-1}+\theta_{2} z_{t-2}$ Where $z_{t} \sim$ $W N\left(0, \sigma^{2}\right)$ and the $z_{t}: t=1,2,3 \ldots, T$ are uncorrelated.
(a) Find
(i) Mean of the $M A(2)$
(ii) Variance of the $M A(2)$
(iii) Autocovariance of the $M A(2)$
(iv) Autocorrelation of the $M A(2)$
(b) is the MA(2) stationary? Explain your answer

